Share
Tweet
Email
As producers start thinking about anhydrous application for wheat this fall, there are a few basic points which they should keep in mind, especially regarding safety. Ammonia is a hazardous material and safety should be the highest priority of the operator.
Safety practices
- Always have your personal safety equipment available and use it. The word “anhydrous” means without water. Ammonia reacts rapidly with the water in tissue if it comes into contact with skin, eyes, and mucous membranes. It is extremely important that when working with ammonia farmers and fertilizer plant employees use all the appropriate personal safety equipment. As a minimum this includes wearing tight-fitting chemical goggles to protect your eyes, chemical-resistant gloves, and a long sleeve shirt or jacket. People working with ammonia should also carry a plastic eyewash bottle of water with them at all times, in addition to having access to safety water tanks on both the ammonia tank and the tractor/applicator.
- Check over the equipment carefully before starting work. Make sure all hoses are in good shape, and valves and break-away disconnects are in good operating condition.
Application methods and ammonia retention
When using ammonia as an N source, there are a number of reactions which come into play that will affect ammonia retention in soils, N response and efficiency. These include chemical reactions, physical factors related to soil conditions, and how deeply the ammonia is applied. One important question many years in Kansas concerns dry soils. Will a dry soil be able to hold anhydrous ammonia or will some or most of the ammonia be lost shortly after application?
- Chemical reactions of ammonia in soil. Ammonia (NH3) needs to react with water shortly after application in order to convert into ammonium (NH4+), which is the molecule that can adhere to clay and organic matter in the soil. Ammonia is very soluble in water. After it is placed in the soil, NH3 reacts with water in the soil to form ammonium-N (NH4+), which is retained on the soil cation exchange sites. This process takes a little time – it does not occur immediately upon contact with the soil. The main controlling factors in the conversion of NH3 to ammonium-N are soil temperature, soil moisture, and soil pH. The higher the soil temperature and the wetter the soil, the more rapid the conversion occurs. If the ammonia does not react with water, it will remain as a gas that could escape from the soil. Also, a chemical equilibrium between NH3 and NH4+ occurs and is affected by soil pH. More NH3 will remain unconverted in the soil longer at higher application rates and at higher soil pH levels.
- Physical factors that influence sealing and ammonia loss. Dry soils may be cloddy, with large air spaces where the soil has cracked. Getting the soil sealed properly above the injection slot can be a problem in dry soils. This can allow the gas to physically escape into the air before it has a chance to be converted into ammonium. On the other hand wet soils tend to smear, leaving application channels open to the surface and providing a pathway for ammonia loss also. It is very important to make sure at the time of application that the slot created by the shank is sealed shut and that there is adequate soil moisture present for the NH3 to be retained in the soil. If the soil is too dry to retain NH3, or is not sealed well, gaseous NH3 can escape into the atmosphere and be lost for crop use.
- Importance of application depth. The deeper the ammonia is applied, the more likely it is that the ammonia will have moisture to react with, and the easier the sealing. Anhydrous ammonia can be applied to dry soils, as long as the ammonia is applied deep enough to get it in some moisture and the soil is well sealed above the injection slot. If the soil is either dry and cloddy, or too wet, there may be considerable losses of ammonia within just a few days of application if the soil is not well sealed above the injection slot and/or the injection point is too shallow. A recent study near Topeka found little or no direct ammonia loss in the week after application when ammonia was applied at 5- or 9-inch depths under good soil conditions. However, under wet conditions, losses as high as 15% of the applied N were seen with shallow application.
Application rate and shank spacing will also have a strong influence on sealing and potential loss. Lower N rates and application with narrow spacings reduces the concentration of N at any one delivery point and reduces the risk of loss.
The human nose is a very good ammonia detector. Producers should be able to tell if anhydrous is escaping from the soil during application or if the ammonia isn’t being applied deeply enough. If ammonia can be smelled, the producer should either change the equipment setup to get better sealing or deeper injection, or wait until the soil has better moisture conditions.
Shank spacing
What about shank spacing for wheat? A number of studies have been done looking at the spacing of anhydrous application on wheat yields. The results have been somewhat erratic, but in general, yields tend to be reduced at shank spacings wider than 20 inches. The differences seem to be greater at higher yield levels, on sandy soils, and at lower N rates.
Recent studies in Kansas showed a 5% yield difference between 15- and 30-inch spacings over 5 experiments. One general observation is that a wavy appearance will be common in fields fertilized with ammonia, with plants near or directly over an ammonia band being taller, and those between bands shorter. At low N rates, this will likely lead to a small yield reduction. But at rates more than 100 pounds of N, yields will likely not be impacted, especially on silt loam or heavier soils.
Summary
In short, ammonia is an excellent N source for wheat, but producers need to consider some basic issues to be able to apply it safely and to gain good efficiency.
- Make sure the application equipment is in good condition, that water tanks on the nurse tanks and the applicator/tractor are full of clean water, and that they use their personal safety equipment and have a personal eye wash bottle with them at all times.
- Apply anhydrous ammonia at the proper depth to ensure good sealing.
- Where possible use a narrow shank spacing, less than 20 inches.
- Use covering disks behind the knives or sealing wings (“beaver tails”) on the knives of conventional applicators.
- Apply anhydrous ammonia at least 1 to 2 weeks before planting. This waiting period should be even longer if soils are dry.
Dorivar Ruiz Diaz, Nutrient Management Specialist
ruizdiaz@ksu.edu
Dave Mengel, Professor Emeritus, Soil Fertility Specialist
dmengel@ksu.edu
Tags: